(512) M.A./M.Sc. Mathematics (Second Semester)
 Examination June 2021
 ADVANCED DISCRETE MATHEMATICS (II)
 Paper - V

Note: Answer the questions from both the Sections as directed. The figures shown at the right side indicate the marks.

SECTION - A

1. Answer the following questions:
(a) Define Null graph.
(b) Define planar graph.
(c) Define type - 3 grammar.
(d) Write Euler's formula for connected planar graph with n vertices e edges and r regions.
(e) Define bainary tree.
(f) Define equivalent machine.
(g) Find the adjacency matrix X for the given multigraph.

(h) Define Regular Grammar.
(i) Write the following production in BNF

$$
\mathrm{S} \longrightarrow \mathrm{~A}, \mathrm{~S} \longrightarrow \mathrm{aB}, \mathrm{~S} \longrightarrow \mathrm{aAb}
$$

(j) A connected graph G is $\ldots \ldots \ldots \ldots \ldots$ if delation of any edge from G, disconnects the graph G.
2. Answer the following short answer type questions:
(a) Define Non-Deterministic Finite Automata.
(b) Explain Baipartite graph.
(c) Obtain grammar for language
$L=\left\{a^{m} b^{n}: m>n, n>0\right\}$
(d) Define Moor machine.
(e) Define Homeomorphic graph.

SECTION - B

Answer the following questions :
3. (a) Write short notes on Grammar.
(b) Construct a grammar for the language $L=\left\{a^{x} \cdot b^{y}: x>y>0\right\}$

OR
(a) Let G be a grammar with vocabulary $\mathrm{V}=\{\mathrm{S}, 0,1\}$, set of terminal $\mathrm{T}=\{0,1\}$ the starting symbol S and the productions are given by $\mathrm{S} \longrightarrow 11<\mathrm{S}>10$. Find $\mathrm{L}(\mathrm{G})$.
(b) Design a finite state machine M which can add two bainary number.
4. (a) Let $M=\left(S, I, O, f, g, s_{o}\right)$ be a finite state machine. The relation K-equivalence on the set S of all states of M is an equivalence relation.
(c) Minimize the finite state machine given by the table :

State	Input		Output
	0	l	
A	D	B	1
B	E	B	0
C	D	A	1
D	C	D	0
E	B	A	1

OR

(a) Describe Mealy machine with an example.
(b) Define Turing machine and construct a Turing machine for adding two non-negative integers.
5. (a) A connected graph G is an Euler graph of and only if G is the unioun of some edges disjoint circuits.
(b) What is the maximum number of vertices in a graph with 35 edges and all vertices are of degree at least 3.

OR

(a) Solve the travelling salesman problem for the following graph:

(b) Define incidence matrix and find incidence matrix of the given digraph:

6. State and prove Euler's formula for conected planar graph.

OR

Let G be a simple graph with n vertices if G has K component then the maximum number of edges that can have are $\frac{(n-k)(n-k+1)}{2}$
7. Write algorithm for shortest path and find shortest path from a to z in the following graph where number associated with the edges are the weights.

OR
Define spanning tree with example. To prove that "Every connected graph has at least one spanning tree.

